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Abstract

Image-caption datasets are crucial for training vision models, but

efforts to boost performance have often focused on making datasets

larger rather than cleaner. This makes error detection especially

important for improving dataset quality and, in turn, model perfor-

mance. This paper defines a caption trajectory: an ordered sequence

of captions obtained by iteratively editing a caption to maximize

an image-text relevance score. Treating this trajectory as a signal

for error detection reveals a clear pattern: correct captions stabilize

after only minor tweaks, whereas incorrect ones can be substan-

tially improved. Leveraging this observation, we present TRACED,

a cost-efficient, model-agnostic and interpretable framework that

turns trajectory statistics into a powerful model for caption error

detection. TRACED is flexible and can be used on top of any state-of-

the-art error detectionmethod to enhance results. To better evaluate

image-caption error detection, we introduce a fine-grained noise

type that subtly alters caption meaning through minimal word

changes, making it significantly harder to detect than standard

caption swaps. We show that TRACED improves state-of-the-art

methods, especially on challenging cases where they typically strug-

gle.

CCS Concepts

•Computingmethodologies→ Scene understanding;Natural

language generation; • Information systems→Data cleaning.
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1 Introduction

Vision models have achieved remarkable success across diverse ap-

plications, including visual understanding [7], multimodal reason-

ing [1], and generative capabilities [8]. To reach their full potential,

these models require extensive training on massive datasets, often

containing millions of image-caption pairs [5, 6, 15, 20, 25, 30, 31].

Due to computational and data constraints, many models rely on

pre-training with web-scraped [16, 19, 29] or even synthetic data

[10, 14, 15]. However, these datasets often contain significant errors

[18, 23, 35], which not only hampers model convergence during

training but can also reinforce undesirable biases and reduce gen-

eralization capabilities.

Recent studies have demonstrated that removing incorrect image-

caption pairs can substantially improve model performance [15, 35].

Therefore, detecting such errors is essential for boosting data quality

and training better models. As manual annotation is infeasible

at scale, many works have proposed automated error detection

methods. These typically rely on assigning a quality or similarity

score to each image-caption pair, using either model confidence

[22, 27, 32], neighborhood consistency [4, 35, 36], or multimodal

alignment [15, 29, 35].

While these existing methods are increasingly powerful, they

typically rely on a single similarity score per image-caption pair.

This poses a key limitation: not all errors are equally detectable.

Some captions may mostly align with the image but include subtle

mistakes—incorrect object labels, color description, or negation—

that still yield high similarity scores (see Figure 3). Conversely, a

correct caption might receive a low score if the image is difficult

to describe or if the wording is imprecise (see Figure 4). In both

cases, relying on a single similarity score can lead to unreliable

error detection.

In this paper, we propose a novel approach that leverages cap-

tion improvement trajectories for more accurate error detection.

Our key insight is that the improvement potential of captions varies

significantly between correct and incorrect captions, a pattern we
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observe consistently across the state-of-the-art alignment scoring

functions we evaluated. Specifically, when starting with an accurate

caption, iterative attempts to improve it yield minimal gains in sim-

ilarity scores. In contrast, an incorrect caption presents substantial

improvement potential through refinement.

We formalize this intuition by generating a sequence of increas-

ingly refined captions for each image-caption pair and analyzing

the resulting trajectory. Rather than making error detection deci-

sions based on a single similarity score, our method examines the

pattern of improvement across the entire sequence. This sequence-

based approach offers a richer signal by capturing the magnitude of

semantic changes between iterations and the rate at which image-

caption alignment improves throughout the refinement process.

Importantly, this trajectory-based method is model-agnostic and

can be combined with existing state-of-the-art error detection base-

lines to enhance their performance.

Our contributions are as follows:

(1) We introduce a new error detection framework called TRACED
1
,

based on the novel idea of creating caption trajectories. By it-

eratively improving captions through token replacements and

deletions, we generate a sequence of captions and analyze both

their alignment with the corresponding image and the mag-

nitude of changes between iterations. This trajectory-based

approach provides richer signals and enables more accurate

identification of mismatched image-caption pairs. TRACED is

cost-efficient and interpretable. It is also flexible and can be ap-

plied on top of any existing error detection method to enhance

its performance.

(2) We evaluate how TRACED improves the performance of several

state-of-the-art error detection methods, including CLIP [29],

LEMON [35], and BLIP [15]. Our experiments contain various

types of label noise, including traditional random caption swaps

and a more challenging type of synthetic noise we generated by

prompting GPT-4o-mini [24]. This novel type of noise consists

of plausible yet incorrect captions designed to better reflect

real-world annotation errors. On average across all noise types,

TRACED consistently improves detection AUC by up to 2.5% on

MS COCO [20], 2.8% on Flickr30k [28], and 2.4% on MM-IMDb

[3].

(3) We demonstrate that TRACED provides interpretable outputs

by identifying specific misaligned tokens in erroneous captions.

For captions involving only a few misleading words, TRACED

is especially effective at pinpointing misaligned tokens and

suggesting meaningful corrections through its trajectory-based

analysis.

2 Related Work

Handling Noise in Vision Datasets. Vision datasets often con-

tain substantial labeling errors, which can significantly degrade the

performance of models trained on them [18, 23, 34, 35]. To address

this, two main research directions have emerged. The first focuses

on learning with noisy labels, either by modifying the loss function

to account for noise [21] or by reducing the influence of likely

1
TRACED stands for Trajectory Creation for Error Detection

corrupted image-text pairs during training [2, 11]. The second fo-

cuses on data cleaning, aiming to identify and remove mislabeled

samples [9, 35]. Our work falls into the second category and aims

at improving the filtering of noisy image-caption pairs.

Error Detection for Classification Datasets. Label noise can
be detected through various approaches. Confident Learning [22]

identifies label errors by analyzing the predicted confidence of a

classifier under a class-conditional noise model. AUM [27] ranks

training examples based on the average logit margin between the

predicted label and the second most competitive label across train-

ing. Dataset Cartography [32] tracks the confidence and variability

of predictions over epochs to identify label errors.

Another popular approach for noise detection utilizes the nearest

neighbors to identify anomalies. Deep k-NN [4] detects label noise

by checking agreement between each label and its neighbors in

a DNN’s embedding space. SimiFeat [36] extends this idea to a

training-free setting, using k-NN voting and ranking in the features

space.

With the emergence of foundation models, new stronger base-

lines for label error detection have appeared. Liang et al. [17] and

Kang et al. [12] propose leveraging CLIP [29], pretrained on 400M

image-text pairs, to score image-label consistency. Building on

this, LEMoN [35] introduces a neighborhood-based method that

aggregates relevance scores from multimodal nearest neighbors

to improve label error detection in both classification and cap-

tioning tasks. LEMoN outperforms prior confidence-based and

neighborhood-based approaches on several classification and image

captioning benchmarks, making it one of the strongest available

baselines. We therefore focus on this method in this work and in-

vestigate how its performance can be further enhanced through

our proposed trajectory-based framework.

Error Detection for Image Captioning. We focus in this paper

on error detection in image captioning, a more challenging task

than image classification, as it requires deeper semantic under-

standing of both language and visual content. To improve caption

quality, BLIP [15] builds on CLIP by learning a shared image-text

embedding space but also by training a classifier to distinguish

high-quality from noisy image-caption pairs. Although not origi-

nally intended for error detection, Zhang et al. [35] evaluates BLIP’s

filtering component and shows that it achieves strong performance

in identifying mislabeled image-caption pairs on the downstream

datasets it was fine-tuned on. We therefore additionally examine

how our framework can enhance BLIP’s performance on caption

error detection.

Evaluation via Synthetic Noise Injection. To evaluate the

effectiveness of error detection methods, synthetic label noise is of-

ten injected into the clean supervised datasets. For example, Pleiss

et al. [27] and Kang et al. [12] use symmetric noise, where labels

are randomly swapped across classes. Northcutt et al. [22] consider

asymmetric noise, where labels are replaced with semantically sim-

ilar ones according to a predefined noise transition matrix. Liang

et al. [17] extend this setup by comparing three noise types: symmet-

ric, asymmetric, and instance-dependent noise, where the incorrect

label is selected based on the features of the instance itself. Zhu
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et al. [36] also explore instance-dependent label noise. However,

these noise models are designed for classification tasks.

Zhang et al. [35] extend these noise types to the image caption-

ing setting by introducing random caption swaps, swaps between

captions sharing common nouns, and swaps within the same cat-

egory when metadata is available. While these approaches move

toward more realistic noise modeling, they still involve replacing

the entire caption. In real-world settings, label noise can be sub-

tler. Annotators may describe the correct image but misrepresent

specific elements, resulting in partially incorrect captions that are

mostly accurate but contain a few errors. In this paper, we introduce

another type of noise for image captioning that aims at capturing

this fine-grained form of caption noise and evaluate our framework

in this more challenging setting.

3 TRACED: A Trajectory-Based Framework for

Error Detection

To address the limitations of single-score image-caption alignment

methods, we propose TRACED, a trajectory-based framework that

leverages iterative caption refinement for error detection. Given an

image and its caption, TRACED iteratively modifies the caption to

increase its alignment with the image and tracks how alignment

evolves across these edits. This produces a caption trajectory, i.e. a

sequence of increasingly refined captions, which we use as a signal

for error detection. Our core insight is as follows: (i) If the original

caption is correct, alignment scores should improve only slightly,

and edits will leave the meaning largely intact. (ii) If the caption

is incorrect, alignment can typically be improved substantially—

often requiring major semantic revisions. By capturing how easily

and meaningfully a caption can be improved, TRACED provides

a richer and more interpretable signal than any single similarity

score. Moreover, it can be integrated with any existing scoring-

based error detection method. Our methodology is detailed in the

following subsections.

3.1 Trajectory Creation and Evaluation

LetX denote the set of captions andY the set of images. We assume

access to a relevance scoring function:

𝑠 : X ×Y −→ R

(𝑥,𝑦) ↦→ 𝑠 (𝑥,𝑦)

This function assigns a real-valued relevance score to an image-

caption pair, with higher values indicating stronger alignment. The

choice of 𝑠 is flexible: it may represent the matching probability in

BLIP [15], the cosine similarity of CLIP image and text embeddings

[12], or a multi-modal similarity metric like LEMoN [35].

To characterize how a caption evolves during the procedure, we

introduce a trajectory evaluation function:

𝑒 : X𝑇+1 × Y −→ R𝑑

(𝑥0, . . . , 𝑥𝑇 , 𝑦) ↦→ 𝑒 (𝑥0, . . . , 𝑥𝑇 , 𝑦)

where𝑇 +1 is the trajectory length and𝑑 is the dimensionality of the

trajectory representation used for error detection. A simple choice

of 𝑒 is the concatenation of relevance scores: 𝑒 (𝑥0, . . . , 𝑥𝑇 , 𝑦) =

[𝑠 (𝑥0, 𝑦), . . . , 𝑠 (𝑥𝑇 , 𝑦)].

Another interesting metric to keep track of is the semantic sim-

ilarity between the caption at step 𝑡 and the original (potentially

noisy) caption 𝑥0, denoted 𝑐 (𝑥𝑡 , 𝑥0). This captures the degree of
semantic change introduced at each step.

In this paper, we focus on these two key signals and construct

the following evaluation function:

𝑒 (𝑥0, . . . , 𝑥𝑇 , 𝑦) = [𝑠 (𝑥0, 𝑦), . . . , 𝑠 (𝑥𝑇 , 𝑦),
𝑐 (𝑥1, 𝑥0), . . . , 𝑐 (𝑥𝑇 , 𝑥0)]

Given access to 𝑠 and 𝑒 , TRACED constructs and evaluates a

caption trajectory as described in Algorithm 1:

Algorithm 1 Trajectory Creation and Evaluation

Input: initial caption 𝑥 , image 𝑦, scoring function 𝑠 , evaluation

function 𝑒 , trajectory length 𝑇 , number of candidates 𝑁

Initialize 𝑥0 ← 𝑥

for 𝑡 = 1 to 𝑇 do

Generate candidate alternatives: 𝑥
(1)
𝑡 , . . . , 𝑥

(𝑁 )
𝑡

Select best candidate: 𝑗𝑡 ← argmax𝑗∈[𝑁 ] 𝑠 (𝑥
( 𝑗 )
𝑡 , 𝑦)

Set 𝑥𝑡 ← 𝑥
( 𝑗𝑡 )
𝑡

end for

Output: 𝑒 (𝑥0, . . . , 𝑥𝑇 , 𝑦)

We apply Algorithm 1 to each image-caption pair in the dataset.

From the resulting trajectory embeddings, we train a classifier to

distinguish between correct and erroneous pairs. While the choice

of 𝑒 is flexible, we focus in this paper on two key signals: the

extent to which image-caption relevance can be improved, and the

magnitude of semantic change required in the caption to achieve

this. Finally, the trajectory embeddings can be used as input features

to train any classifier to distinguish between correct and incorrect

image-caption pairs. The overall framework is described in Figure

1.

3.2 Caption Exploration

A critical component of Algorithm 1 is the generation of candidate

captions at each step. We explore and evaluate several strategies

for this purpose:

• Elimination. This simple and efficient method generates candi-

dates by removing one token at a time from the current caption.

Formally, for a caption 𝑥 = (𝑤1, . . . ,𝑤𝐿) with 𝐿 tokens, we set

𝑁 = 𝐿 in Algorithm 1 and produce 𝐿 candidates:

𝑥 (𝑖 ) = (𝑤1, . . . ,𝑤𝑖−1,𝑤𝑖+1, . . . ,𝑤𝐿)
This strategy is computationally cheap: it requires only 𝐿 forward

passes through the scoring function 𝑠 in Algorithm 1 and no

gradient computations.

• Greedy Coordinate Descent (GCD). Inspired by Zou et al. [37],

this method aims to find improved captions by replacing individ-

ual tokens with alternatives that increase the relevance score 𝑠 .

For each token in a caption of length 𝐿, we consider the top-𝐾

gradient-guided replacements, leading to a candidate pool of size

𝐾𝐿. Since this is often too large to evaluate exhaustively, we

randomly sample 𝑁 token replacements from this space. While
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Some students sit outside 
school buildings in the grass.

1. some students sit 
outside school 
buildings in the frost.

2. some students 
serve outside school 
buildings in the frost .
…

Trajectory  Creation

Trajectory 
Evaluation

Train model on 
trajectories for 
error detection 

Learning

1

2

3

Figure 1: TRACED Pipeline. Given a noisy image-caption pair,

a caption trajectory is generated by iteratively maximizing a

relevance scoring function 𝑠. Each trajectory is then evalu-

ated using various alignmentmetrics. These trajectories then

serve as features to distinguish between correct and incorrect

image-caption pairs. The example is from Flickr30k [28].

more powerful than elimination, this approach is more expensive

due to the gradient computation and the larger candidate pool

(𝑁 > 𝐿).

• Fast GCD. To balance the efficiency and quality of the caption

trajectory, we introduce a hybrid strategy that combines Elimina-

tion with Greedy Coordinate Descent (GCD). We first apply the

Elimination method to identify the token whose removal most

improves the relevance score. Then, we explore only the top-𝐾

replacements for that specific token, reducing the search space

to 𝐾 candidates. This approach requires only one gradient com-

putation and 𝐾 +𝐿 forward passes per iteration in Algorithm 1, a

significant reduction compared to the 𝐾𝐿 evaluations needed for

full exploration. Moreover, by focusing optimization on the most

impactful token, we promote more effective substitutions than

would be achieved by randomly sampling from a large candidate

pool.

The full algorithm descriptions are provided in Appendix A.1.

3.3 New Benchmark Dataset Creation

Prior work on error detection in image captioning introduces noise

via full caption swaps as a means of constructing evaluation bench-

marks [35]. However, such swaps replace the entire caption, often

resulting in text unrelated to the original. In contrast, real-world

annotation errors can be more subtle, with annotators correctly

describing an image but misrepresenting specific details. To better

capture fine-grained noise, we propose a new approach for con-

structing a challenging benchmark by modifying only a few words

within each caption. More specifically, for each original caption, we

leverage a large language model (LLM) to generate 𝐾 variants that

maintain the same structure but introduce small semantic errors.

The exact prompt is provided in Appendix A.2.

While many generated options are useful, some may be para-

phrases or near-duplicates. To filter these, we apply Alignscore [33],

a factual consistency metric based on a fine-tuned natural language

inference model. Alignscore assigns low scores to captions that

either omit key information from or contradict the original caption.

The selected variants thus differ meaningfully in content while

remaining structurally close, effectively modeling fine-grained se-

mantic noise. Figure 2 illustrates this generation and filtering pro-

cess.

ScoresSentences

0.43A man is standing on a chair.

0.44A woman is standing on a ladder.

……

0.8A man is standing on a ladder 
carefully.

0.84A man is standing on a small ladder.

A man is standing on a ladder.

A man is standing on a chair.
A woman is standing on a ladder.

Sentences 
generated using 

gpt-o4-mini

Alignscore between 
original and generated 

sentence

Only the top-2 sentences are 
kept

Figure 2: Illustration of the fine-grained noise generation

pipeline. Given an original caption, a language model gen-

erates 20 variants. Alignscore is then used to evaluate the

factual consistency of each variant with respect to the orig-

inal. The top-2 least aligned (lowest-scoring) sentences are

selected as fine-grained noisy captions.

3.4 Interpretability

Examining the caption trajectory can help identify the source of

the error. As shown in Figure 3, the first tokens whose removal or

replacement usually leads to the greatest improvement in alignment

score often correspond to the source of the misalignment.

In this example, the initial alignment score from BLIP’s classifier

is 0.55, indicating a 55% probability that the image-caption pair is

correct. However, the trajectory shows that a meaningful semantic

change can increase the alignment score to approximately 99.4%,

indicating that the original caption is likely erroneous.

On the contrary, Figure 4 shows that while TRACED improves the

alignment score for this example, the changes involve only minor
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Correct Caption: A man is 
standing in front of a brick 
storefront wearing a black 
jacket.

Noisy Caption: A man is 
standing in front of a brick 
storefront wearing no
jacket.

1. a man is 
standing in front of 
a brick storefront 
wearing jacket.

2. a man is 
standing in front of 
a brick storefront 
wearing jacket 

…

6. man standing in 
front brick 
storefront wearing 
jacket

…

Caption 
Trajectory

Removed 
word

no

.

…

of

…

Figure 3: TRACED offers interpretability on a Flickr30k ex-

ample [28], identifying "no" as the source of misalignment.

The BLIP-based alignment score (ITM block) peaks at step 6,

where the caption accurately matches the image. Removing

"no" leads to a notable decline in semantic alignment across

the caption trajectory.

semantic edits. The initial BLIP (ITM) score is relatively low (0.44),

but the trajectory reveals that these small revisions are sufficient to

boost the score. This suggests that the original caption was likely

correct, and the low initial score stems from the model’s difficulty

with the example rather than a true misalignment.

For incorrect captions, token replacements generated by GCD

and Fast GCD often enhance the description by introducing details

that are present in the image but missing from the noisy caption.

In contrast, when the original caption is correct, the models tend

to propose edits that refine the wording without introducing sub-

stantial new information, focusing instead on phrasing that better

aligns with the visual content. This behavior is illustrated in the

caption trajectories produced by GCD and Fast GCD for the exam-

ples in Figures 3 and 4. Full trajectories for these cases are provided

in Figures 7 and 8 in Appendix A.3.

3.5 Parallelization benefits

TRACED applies the trajectory creation and evaluation from Algo-

rithm 1 independently to each sentence in the training, validation,

and test sets. This enables efficient large-scale parallelization. Our

method benefits from both intra-GPU and multi-GPU parallelism:

given access to 𝑛 GPUs, the dataset can be split into 𝑛 subsets pro-

cessed in parallel, with each GPU handling one subset in batches.

Correct Caption: Vehicles 
on a street near a green 
traffic light.

1. vehicles on a 
near a green traffic 
light.

2. vehicles on a 
near a green traffic 
light

3. vehicles on near 
a green traffic light

…

Caption 
Trajectory

Removed 
word

street

.

a

…

Figure 4: TRACED improves the BLIP-based image-caption

alignment score (ITM) on an MS COCO example [20], with

minimal semantic change in the revised captions, suggesting

the original pair is likely accurate.

4 Experiments

4.1 Setup

All experiments are conducted using 4 NVIDIA L40 GPUs, each

with 40GB of memory. As described in Section 3.5, the datasets are

split into 4 subsets, with each GPU processing one subset indepen-

dently. Sentences are processed in batches of size 128 on each GPU.

TRACED is implemented using PyTorch [26].

4.2 Baselines and Datasets

Baselines. We evaluate the performance of TRACED across sev-

eral existing error detection baselines and datasets. Specifically, we

apply TRACED to the following baselines:

• BLIP [15]

• LEMoN [35]

• CLIP [12, 29]

CLIP uses cosine similarity in a joint embedding space, LEMoN

aggregates CLIP scores from nearest neighbors, and BLIP combines

contrastive learning (ITC block) to learn a shared image-text em-

bedding space with a classification head (ITM block) for alignment

prediction.

LEMoN supports two versions: FIX (default hyperparameters)

and OPT (hyperparameters tuned via validation).

We apply TRACED on top of each of these baselines by using

their respective alignment scores as the scoring function 𝑠 during

trajectory construction. For BLIP, we evaluate TRACED using both

the ITC and ITM modules. For LEMoN, we follow the protocol in
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Zhang et al. [35], applying our method to both the FIX and OPT

variants. For CLIP, we use the standard cosine similarity between

image and text embeddings.

Datasets. We evaluate the impact of TRACED on LEMoN and

CLIP using the following three datasets:

• Flickr30k [28]

• MS COCO [20]

• MM-IMDb [3]

For Flickr30k and MS COCO, we use the standard Karpathy split

[13]. For MM-IMDb, we adopt the same random 80/10/10 train-

validation-test split as described in [35].

For BLIP, finetunedmodels are publicly available only for Flickr30k

and MS COCO. Therefore, we evaluate the improvements from

TRACED on these two datasets only.

Noise Types. We evaluate TRACED’s improvements under three

types of synthetic label noise, introducing 50% erroneous image-

caption pairs for each seed:

• Random noise: A subset of captions is randomly replaced with

others from the dataset.

• Noun noise: Captions are swapped with others that share at least

one noun, introducing partial semantic overlap.

• Fine-grained noise: Captions areminimally perturbed using gpt-o4-mini
to introduce subtle semantic inconsistencies, as described in Sec-

tion 3.3.

Due to the higher cost of generating fine-grained noise using the

ChatGPT API, we limit its use to Flickr30k and MS-COCO. For both

random and noun noise, we follow the methodology introduced in

Zhang et al. [35].

4.3 Trajectory Construction and Learning

Framework

Trajectory Generation Hypeparameters. The trajectory gen-

eration hyperparameters for Elimination, GCD, and Fast GCD are

detailed in Appendix A.4.

Trajectory EvaluationMetrics. For the alignment score 𝑠 (𝑥𝑡 , 𝑦),
we use the scoring function of the baseline being evaluated—either

CLIP, LEMoN, or BLIP.

For the semantic similarity 𝑐 (𝑥𝑡 , 𝑥0), we compute the cosine

similarity between the embeddings of 𝑥𝑡 and 𝑥0. When the baseline

is BLIP, we use its ITC block to extract embeddings. For CLIP and

LEMoN, we use CLIP embeddings.

We then construct the evaluation function 𝑒 as the concatenation

of these metrics:

𝑒 (𝑥0, . . . , 𝑥𝑇 , 𝑦) = [𝑠 (𝑥0, 𝑦), . . . , 𝑠 (𝑥𝑇 , 𝑦),
𝑐 (𝑥1, 𝑥0), . . . , 𝑐 (𝑥𝑇 , 𝑥0)]

Learning Procedure. Once the trajectory embeddings are con-

structed, they can be used as features to predict whether a given

image-caption pair contains an error. While any standard classifi-

cation model could be applied at this stage, we use XGBoost and

CART due to their simplicity, as our primary goal is to demon-

strate the effectiveness of our approach. More sophisticated models

could be explored to further improve the performance gap between

TRACED and the original baseline.

For datasets that use the Karpathy split, we combine the original

training and validation sets. We then perform 3-fold grid-search

cross-validation to select the best model and hyperparameters. The

complete grid searches are provided in Appendix A.4.

The best-performing model (XGBoost or CART) and its cor-

responding hyperparameters are selected based on the highest

cross-validation AUC score.

4.4 Main Results

The results are presented in Table 1, where AUC scores are averaged

over all applicable noise types and random seeds.

We observe some variability in performance across random seeds,

complicating direct comparisons based solely on raw Test AUC.

However, when controlling for seed and noise type, TRACED con-

sistently outperforms the baselines. To capture this pattern, we

report the mean percent improvement in Test AUC relative to the

baselines, averaged across all seeds and noise types. TRACED in-

deed yields consistent and significant gains over each baseline,

highlighting its effectiveness for error detection.

Table 1 also suggests that the Elimination algorithm generates

more informative trajectories for the error detection task compared

to GCD and Fast GCD. We attribute this to two main factors:

• The Elimination algorithm progressively removes words

from the caption, producing a trajectory in which the sim-

ilarity score typically increases before decreasing. Unlike

GCD and Fast GCD, which only replace tokens to increase

alignment, Elimination trajectories reflect both the positive

and negative contributions of individual words, revealing

which original tokens align well with the image and which

do not.

• The Elimination algorithm operates in a much more con-

strained search space, which introduces a form of regular-

ization. In contrast, GCD and Fast GCD allow broader sub-

stitutions, sometimes leading to non-meaningful token re-

placements that nonetheless increase the alignment score,

reflecting the tendency of CLIP and BLIP to assign high

scores to tokens that lack semantic relevance.

A detailed breakdown by noise type is provided in Table 6 (Ap-

pendix A.5). The largest gains from TRACED occur under the fine-

grained noise setting, where subtle word-level changes make detec-

tion especially challenging and baseline methods struggle most. In

contrast, random and noun-based noise often result in clearly mis-

matched captions, making them easier for baselines to detect. These

results highlight TRACED ’s strength in handling more realistic and

semantically nuanced errors.

4.5 Computation Overhead

Table 2 reports the computation time required by TRACED and the

original baselines to process 1,000 image-caption pairs on a single

L40 GPU. Baseline models such as BLIP, LEMoN, and CLIP are very

fast as they require only a single forward pass per pair. Despite

performing multiple model evaluations to construct trajectories, all

variants of TRACED, including Elimination, Fast GCD, and GCD,
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Table 1: Comparison of TRACED with baselines. "Elim" and

"FGCD" denote Elimination and Fast GCD, respectively. Re-

sults are averaged over 3 seeds and the applicable noise types:

noun and random for MM-IMDB, and noun, random, and

fine-grained for Flickr30k and MS-COCO (50% noise). We

report mean AUC and mean AUC improvement compared

to the baseline, with standard errors.

Dataset Method
Algor-

ithm

AUC (%)
Improve-

ment (%)

Flickr-

30k

TRACED-

BLIP (itm)

Elim 89.5 ± 0.3 1.3 ± 0.6

FGCD 89.2 ± 0.4 0.8 ± 0.5

GCD 88.8 ± 0.4 0.3 ± 0.5

BLIP (itm) - 88.5 ± 0.6 0.0 ± 0.0

TRACED-

BLIP (itc)

Elim 88.1 ± 0.3 0.9 ± 0.4

FGCD 88.1 ± 0.3 0.9 ± 0.6

GCD 88.0 ± 0.4 0.7 ± 0.4

BLIP (itc) - 87.4 ± 0.5 0.0 ± 0.0

TRACED-

LEMoNOPT

Elim 85.6 ± 0.7 1.8 ± 0.6

FGCD 85.5 ± 0.6 1.9 ± 0.6

GCD 85.7 ± 0.8 2.1 ± 0.9

LEMoNOPT - 84.3 ± 0.5 0.0 ± 0.0

TRACED-

LEMoNFIX

Elim 85.0 ± 0.5 1.7 ± 1.0

FGCD 85.0 ± 0.5 1.7 ± 0.3

GCD 85.6 ± 0.6 2.6 ± 0.9

LEMoNFIX - 83.9 ± 0.5 0.0 ± 0.0

TRACED-

CLIP

Elim 85.7 ± 0.3 2.8 ± 0.9

FGCD 85.5 ± 0.2 2.6 ± 0.5

GCD 85.5 ± 0.4 2.5 ± 1.0

CLIP - 83.8 ± 0.4 0.0 ± 0.0

MM-

IMDb

TRACED-

LEMoNOPT

Elim 79.0 ± 0.4 1.4 ± 0.5

FGCD 78.0 ± 0.4 0.2 ± 0.3

GCD 78.3 ± 0.5 0.5 ± 0.4

LEMoNOPT - 77.9 ± 0.3 0.0 ± 0.0

TRACED-

LEMoNFIX

Elim 78.3 ± 0.2 2.4 ± 0.4

FGCD 77.2 ± 0.1 0.9 ± 0.5

GCD 77.6 ± 0.3 1.4 ± 0.4

LEMoNFIX - 76.5 ± 0.4 0.0 ± 0.0

TRACED-

CLIP

Elim 78.5 ± 0.3 1.8 ± 0.2

FGCD 77.5 ± 0.2 0.4 ± 0.3

GCD 77.8 ± 0.2 0.9 ± 0.3

CLIP - 77.2 ± 0.4 0.0 ± 0.0

MS-

COCO

TRACED-

BLIP (itm)

Elim 90.5 ± 0.3 1.7 ± 0.1

FGCD 89.8 ± 0.3 0.9 ± 0.2

GCD 89.7 ± 0.3 0.8 ± 0.1

BLIP (itm) - 89.1 ± 0.2 0.0 ± 0.0

TRACED-

BLIP (itc)

Elim 88.7 ± 0.3 1.8 ± 0.1

FGCD 88.4 ± 0.2 1.4 ± 0.3

GCD 88.1 ± 0.3 1.0 ± 0.2

BLIP (itc) - 87.4 ± 0.3 0.0 ± 0.0

TRACED-

LEMoNOPT

Elim 85.0 ± 0.4 1.6 ± 0.2

FGCD 84.6 ± 0.5 1.0 ± 0.2

GCD 84.5 ± 0.5 1.0 ± 0.1

LEMoNOPT - 83.8 ± 0.5 0.0 ± 0.0

TRACED-

LEMoNFIX

Elim 84.3 ± 0.3 2.3 ± 0.4

FGCD 83.9 ± 0.6 1.8 ± 0.5

GCD 83.9 ± 0.5 1.8 ± 0.4

LEMoNFIX - 82.6 ± 0.5 0.0 ± 0.0

TRACED-

CLIP

Elim 84.5 ± 0.4 2.5 ± 0.2

FGCD 83.7 ± 0.4 1.5 ± 0.4

GCD 83.8 ± 0.3 1.6 ± 0.2

CLIP - 82.7 ± 0.3 0.0 ± 0.0

remain practical and scalable. Among the proposed methods, Elim-

ination is the most efficient, offering substantial speed advantages

while maintaining among the best performance. Fast GCD achieves

a strong balance between speed and trajectory quality. For example,

when scaled to 1,000,000 image-caption pairs using BLIP (ITM), the

most expensive baseline, and 4 L40 GPUs, Elimination completes

in approximately 6.5 hours and Fast GCD takes about 2.6 days.

As described in Section 3.5, thanks to the high degree of par-

allelism in our method, leveraging more GPUs can substantially

further reduce total processing time.

We want to emphasize that TRACED needs to be applied only

once to identify and filter out incorrect image-caption pairs. This

one-time computational cost is reasonable for generating a cleaner

dataset that can be reused across various downstream tasks, includ-

ing pre-training, fine-tuning, and evaluation.

Table 2: Computation time comparison across algorithms.

Reported times (in seconds) corresponds to the duration re-

quired to process 1,000 sentences with a single L40 GPU,

including both trajectory exploration and alignment score

evaluation.

Method Algorithm Computation Time (s)

BLIP (ITM) - 3.82 ± 0.11

TRACED-

BLIP (ITM)

Elimination 92.53 ± 1.16

Fast GCD 905.22 ± 0.99

GCD 1617.06 ± 0.13

BLIP (ITM) - 3.56 ± 0.24

TRACED-

BLIP (ITM)

Elimination 49.05 ± 0.28

Fast GCD 389.19 ± 0.51

GCD 688.90 ± 0.55

LEMoNOPT - 3.13 ± 0.08

TRACED-

LEMoNOPT

Elimination 43.77 ± 0.59

Fast GCD 451.28 ± 0.43

GCD 799.03 ± 1.79

LEMoNFIX - 3.19 ± 0.40

TRACED-

LEMoNFIX

Elimination 43.44 ± 0.44

Fast GCD 452.48 ± 1.07

GCD 802.13 ± 1.76

CLIP - 2.40 ± 0.07

TRACED-

CLIP

Elimination 43.10 ± 0.57

Fast GCD 444.80 ± 0.55

GCD 788.97 ± 0.29

5 Ablations

5.1 Contribution of Image-Caption Alignment

and Caption-Caption Similarity Metrics

To isolate the contribution of each trajectory evaluation metric, we

conduct ablation studies using TRACED with either the alignment

score 𝑠 or the semantic similarity score 𝑐 alone. Table 3 reports

the mean percent change in Test AUC when using one of the two

metrics alone, relative to using both jointly.

Across all baselines, using either metric in isolation results in

a consistent and significant drop in performance. The alignment
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Table 3: Mean percent improvement in Test AUC when us-

ing either 𝑠 or 𝑐 alone in TRACED, compared to using both

jointly. Experiments are conducted on MS-COCO using the

Elimination algorithm. Results are averaged over 3 seeds and

all 3 noise types (50% noise), with standard errors reported.

Method

Alignment

image-caption

𝑠 (𝑥, 𝑦)

Similarity

caption-caption

𝑐 (𝑥𝑡 , 𝑥0 )

BLIP (itm) −0.41 ± 0.20 −6.03 ± 0.41
BLIP (itc) −0.59 ± 0.20 −10.18 ± 0.41
LEMoNOPT −0.55 ± 0.26 −7.22 ± 0.49
LEMoNFIX −0.41 ± 0.38 −6.44 ± 0.56
CLIP −0.60 ± 0.12 −7.00 ± 0.29

score 𝑠 alone is much more informative, likely because a notable

increase in alignment often signals an error in the original cap-

tion. In contrast, the semantic similarity score 𝑐 is less useful on its

own, as captions along the trajectory may differ substantially from

the original, reducing its standalone discriminative power. How-

ever, combining 𝑠 and 𝑐 consistently yields the best performance: 𝑠

captures the degree of alignment improvement, while 𝑐 indicates

whether that improvement involves a substantial semantic change

or only a minor rephrasing.

5.2 Importance of the Trajectory

To assess whether the full caption trajectory is necessary for ef-

fective error detection, we compare the full TRACED trajectory to

three simplified variants: (i) using only the first step (𝑠 (𝑥0, 𝑦); note
that 𝑐 (𝑥0, 𝑥0) = 1 provides no additional signal, (ii) using only the

last step (𝑠 (𝑥𝑇 , 𝑦) and 𝑐 (𝑥𝑇 , 𝑥0), and (iii) using the mean of all align-

ment and similarity values across the trajectory (
1

𝑇+1
∑𝑇
𝑡=0 𝑠 (𝑥𝑡 , 𝑦)

and
1

𝑇

∑𝑇
𝑡=1 𝑐 (𝑥𝑡 , 𝑥0)). Table 4 reports the mean percent change in

Test AUC for each variant, relative to using the complete trajectory.

Table 4: Mean percent improvement in Test AUC when us-

ing only the first step, last step or mean trajectory alone

in TRACED, compared to using the whole trajectory. Exper-

iments are conducted on Flickr30k using the Elimination

algorithm. Results are averaged over 3 seeds and all 3 noise

types (50% noise), with standard errors reported.

Method

First

Step

Last

Step

Mean

Trajectory

BLIP (itm) −1.25 ± 0.56 −43.07 ± 0.94 −4.90 ± 0.39
BLIP (itc) −0.85 ± 0.34 −40.54 ± 1.35 −5.48 ± 0.95
LEMoNOPT −1.75 ± 0.57 −38.67 ± 1.46 −5.72 ± 0.53
LEMoNFIX −1.62 ± 0.93 −38.18 ± 0.83 −5.67 ± 1.15
CLIP −2.62 ± 0.82 −38.49 ± 1.18 −5.37 ± 0.26

Across all baselines, removing the full trajectory leads to consis-

tent and substantial drops in performance. Retaining only the first

step causes the mildest decline. Relying only on the last step leads

to the sharpest drop (over 38% in all cases) while averaging over

the trajectory performs slightly better but remains far behind the

full sequence. These results highlight the importance of modeling

the entire trajectory, which captures how the alignment evolves

and provides richer information than a single point summary.

5.3 Maximizing or Minimizing the Scoring

Function?

In TRACED, we proposed to generate the trajectories bymaximizing

the image-caption alignment score 𝑠 at each step. To test whether

the opposite strategy is also effective, we compare against a variant

that minimizes 𝑠 instead. Table 5 reports the mean percent improve-

ment in Test AUC when using the minimization approach, relative

to maximization.

Table 5: Mean percent improvement in Test AUC when gen-

erating the trajectory in TRACED by minimizing 𝑠 rather

than maximizing it. Experiments are conducted on Flickr30k

using the Elimination algorithm. Results are averaged over 3

seeds and all 3 noise types (50% noise), with standard errors

reported.

BLIP

(itm)

BLIP

(itc)
LEMoNFIX LEMoNOPT CLIP

−0.76
±0.26

−0.46
±0.33

−0.70
±0.48

−0.58
±0.63

−0.24
±0.43

Across all baselines, maximizing the alignment score yields

modest but consistent improvements over minimization. This sug-

gests that constructing trajectories toward higher-scoring cap-

tions—rather than worse ones—provides a more reliable signal for

detecting semantic inconsistencies.

6 Conclusion

We presented TRACED, a flexible and interpretable framework

for image-caption error detection. By iteratively improving cap-

tions and analyzing alignment and semantic similarity over time,

TRACED extracts rich signals that help distinguish between correct

and erroneous image-caption pairs. Our framework can be applied

on top of existing error detection methods such as BLIP, CLIP, and

LEMoN, consistently boosting their performance across multiple

datasets and noise types.

We also introduced a new fine-grained noise generation pro-

cess that reflects real-world annotation errors and provides a more

challenging benchmark for evaluation. In addition to improved

performance, TRACED offers interpretability by revealing which

parts of a caption contribute most to the misalignment, and even

suggests possible corrections.
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A Appendix

A.1 Exploration Algorithms Details

The Elimination Algorithm helps identify which words in the caption may be causing a mismatch with the image. By observing how the

alignment score changes when each word is removed, we can identify tokens that negatively impact the relevance of the caption to the

image.

Algorithm 2 Elimination Algorithm

Input: initial caption 𝑥

Note 𝑥 = (𝑤1, . . . ,𝑤𝐿) with𝑤1, . . . ,𝑤𝐿 the tokens in caption 𝑥

for 𝑖 = 1 to 𝐿 do

𝑥 (𝑖 ) ← (𝑤1, . . . ,𝑤𝑖−1,𝑤𝑖+1, . . . ,𝑤𝐿)
end for

Output: {𝑥 (1) , . . . , 𝑥 (𝐿) }

The Greedy Coordinate Descent (GCD) algorithm perturbs the caption by replacing individual tokens. For each position, it selects top-𝐾

promising replacements based on the gradient of the alignment score. A subset of candidate captions is then generated by sampling token

replacements at random.

This algorithm is inspired by the GCD method proposed in [37], which was originally developed for adversarial attacks on large language

models. In our work, we adapt this approach for the purpose of improving image captions.

Algorithm 3 Greedy Coordinate Descent (GCD)

Input: Initial caption 𝑥 = (𝑤1, . . . ,𝑤𝐿), image 𝑦, scoring function 𝑠 , evaluation function 𝑒 , number of candidates 𝑁 , top-𝐾 promising

replacements per position

LetV be the vocabulary, and 𝑒 (𝑣) the embedding of token 𝑣 ∈ V
for 𝑗 = 1 to 𝐿 do

Compute top-𝐾 replacements for𝑤 𝑗0 :

X𝑗 ← Top-𝐾

{
∇𝑒 (𝑤𝑗

0
)𝑠 (𝑥,𝑦)𝑇 (𝑒 (𝑣) − 𝑒 (𝑤 𝑗 )) | 𝑣 ∈ V

}
end for

for 𝑘 = 1 to 𝑁 do

𝑗 ∼ Uniform ({1, . . . , 𝐿})
𝑤 ′
𝑗
∼ Uniform(X𝑗 )

𝑥 (𝑘 ) ← (𝑤1, . . . ,𝑤 𝑗−1,𝑤 ′𝑗 ,𝑤 𝑗+1, . . . ,𝑤𝐿)
end for

Output: {𝑥 (1) , . . . , 𝑥 (𝑁 ) }

The Fast GCD algorithm is a more efficient alternative to full GCD. It first applies the Elimination Algorithm to identify the token position

𝑗0 ∈ [𝐿] that most negatively impacts alignment. Gradient-based substitution is then restricted to this single position. Unlike full GCD,

which randomly samples 𝑁 captions from a pool of 𝐾 × 𝐿 candidates (𝑁 ≪ 𝐾 × 𝐿), Fast GCD can exhaustively evaluate all 𝐾 candidate

replacements at position 𝑗0. This approach enables to find better token substitutions using a reduced number of forward passes through the

alignment scoring function 𝑠

A.2 Prompt for Fine-Grained Noise Type

We use the prompts in Figures 5 and 6 to generate 20 candidate noisy captions for each caption in the MS COCO [20] and Flickr30k [28]

datasets.

A.3 Example of Caption Trajectory with GCD and Fast GCD

We display in Figure 7 and 8 the obtained trajectories for GCD and Fast GCD on the example from Figure 3 and 4 respectively.

A.4 Hyperparameters

Trajectory Generation Hyperparameters. Depending on the exploration strategy, the caption trajectory generation from Algorithm 1

involves a few hyperparameters:

• Elimination Algorithm: We set𝑇 = 𝐿 and 𝑁 =
𝐿 (𝐿−1)

2
, where 𝐿 is the caption length. The algorithm removes one token at a time, selecting

the one whose removal most improves the alignment score 𝑠 , and continues until there is no token in the sentence.
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Algorithm 4 Fast Greedy Coordinate Descent (Fast GCD)

Input: Initial caption 𝑥 = (𝑤1, . . . ,𝑤𝐿), image 𝑦, scoring function 𝑠 , evaluation function 𝑒 , top-𝐾 promising replacements per coordinate

LetV be the vocabulary and 𝑒 (𝑣) the embedding of token 𝑣 ∈ V
Run Elimination Algorithm: {𝑥 (𝑒,1) , . . . , 𝑥 (𝑒,𝐿) } ← Elim(𝑥)
Select most promising coordinate: 𝑗0 ← argmax𝑗∈[𝐿] 𝑠 (𝑥 (𝑒,𝑗 ) , 𝑦)
Compute top-𝐾 replacements for𝑤 𝑗0 :

X𝑗0 ← Top-𝐾

{
∇𝑒 (𝑤𝑗

0
)𝑠 (𝑥,𝑦)𝑇 (𝑒 (𝑣) − 𝑒 (𝑤 𝑗0 )) | 𝑣 ∈ V

}
for𝑤 ′ ∈ X𝑗0 do
𝑥 (𝑤

′ ) ← (𝑤1, . . . ,𝑤 𝑗0−1,𝑤
′,𝑤 𝑗0+1, . . . ,𝑤𝐿)

end for

Output: {𝑥 (𝑤′ ) | 𝑤 ′ ∈ X𝑗0 }

• GCD Algorithm: We use 𝑇 = 10, 𝐾 = 128, and 𝑁 = 256.

• Fast GCD Algorithm: We set 𝑇 = 10, 𝑘 = 128 and 𝑁 = 𝐾 = 128 since we explore all 𝐾 promising replacements for the single token

identified via Elimination Algorithm.

Grid Searches. The hyperparameter grids used for model selection are as follows:

XGBoost hyperparameters:

• max_depth ∈ {3, 4, 5}
• learning_rate ∈ {0.01, 0.05, 0.1, 0.5}
• n_estimators ∈ {50, 100, 200, 400}

CART hyperparameters:

• max_depth ∈ {1, 5, 10, +∞}

A.5 Results per noise type

We present in Table 6 the impact of TRACED on various baselines across the three noise types we evaluate. TRACED consistently improves

performance across all baselines and noise settings. Notably, the gains are more substantial for noise types that are harder to detect. For

example, improvements are modest for random noise, where baselines already achieve over 97% AUC on Flickr30k and MS COCO. On the

contrary, improvements are much more pronounced on the Fine-Grained noise and on MM-IMDb, which present more challenging errors

for the existing methods.
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Table 6: Comparison of TRACED with baselines. "Elim" and "FGCD" denote Elimination and Fast GCD, respectively. Results are

averaged over 3 seeds for each noise type (50% noise). We report mean AUC and mean AUC improvement compared to the

baseline, with standard errors.

Dataset Method Alg.

Random Noun Fine-Grained

AUC (%)
Improve-

ment (%)

AUC (%)
Improve-

ment (%)

AUC (%)
Improve-

ment (%)

Flickr-

30k

TRACED-

BLIP (itm)

Elim 98.2 ± 0.1 0.4 ± 0.1 93.8 ± 0.3 0.2 ± 0.2 76.6 ± 0.3 3.3 ± 0.8

FGCD 98.3 ± 0.1 0.5 ± 0.0 93.8 ± 0.3 0.3 ± 0.1 75.4 ± 0.4 1.7 ± 0.7

GCD 98.1 ± 0.2 0.3 ± 0.1 93.6 ± 0.3 0.0 ± 0.0 74.5 ± 0.5 0.5 ± 0.7

BLIP (itm) - 97.8 ± 0.1 0.0 ± 0.0 93.6 ± 0.3 0.0 ± 0.0 74.2 ± 0.8 0.0 ± 0.0

TRACED-

BLIP (itc)

Elim 97.8 ± 0.1 0.1 ± 0.0 93.4 ± 0.2 1.1 ± 0.4 73.1 ± 0.4 1.4 ± 0.3

FGCD 97.9 ± 0.1 0.2 ± 0.1 93.0 ± 0.3 0.7 ± 0.2 73.3 ± 0.3 1.9 ± 0.7

GCD 97.8 ± 0.1 0.1 ± 0.1 93.1 ± 0.5 0.6 ± 0.4 73.0 ± 0.0 1.4 ± 0.5

BLIP (itc) - 97.7 ± 0.1 0.0 ± 0.0 92.5 ± 0.5 0.0 ± 0.0 72.0 ± 0.4 0.0 ± 0.0

TRACED-

LEMoNOPT

Elim 97.5 ± 0.1 0.0 ± 0.0 90.8 ± 0.1 1.8 ± 0.4 68.5 ± 1.0 3.6 ± 0.8

FGCD 97.5 ± 0.1 -0.0 ± 0.0 89.7 ± 0.1 0.6 ± 0.3 69.4 ± 0.9 5.0 ± 0.9

GCD 97.3 ± 0.0 -0.2 ± 0.1 90.0 ± 0.3 0.9 ± 0.3 69.8 ± 1.0 5.5 ± 1.3

LEMoNOPT - 97.5 ± 0.1 0.0 ± 0.0 89.2 ± 0.3 0.0 ± 0.0 66.1 ± 0.7 0.0 ± 0.0

TRACED-

LEMoNFIX

Elim 97.7 ± 0.1 0.5 ± 0.1 89.7 ± 0.2 0.4 ± 0.2 67.7 ± 0.7 4.1 ± 1.4

FGCD 97.1 ± 0.2 -0.1 ± 0.1 89.5 ± 0.3 0.2 ± 0.1 68.4 ± 0.6 5.1 ± 0.4

GCD 97.0 ± 0.2 -0.1 ± 0.2 90.0 ± 0.3 0.8 ± 0.2 69.8 ± 0.8 7.2 ± 1.3

LEMoNFIX - 97.2 ± 0.0 0.0 ± 0.0 89.3 ± 0.4 0.0 ± 0.0 65.1 ± 0.6 0.0 ± 0.0

TRACED-

CLIP

Elim 97.6 ± 0.1 0.4 ± 0.1 90.7 ± 0.2 1.6 ± 0.4 68.9 ± 0.4 6.2 ± 1.2

FGCD 97.3 ± 0.1 0.1 ± 0.1 89.4 ± 0.1 0.1 ± 0.2 69.7 ± 0.3 7.5 ± 0.7

GCD 97.1 ± 0.2 -0.1 ± 0.2 89.9 ± 0.3 0.7 ± 0.0 69.4 ± 0.4 7.0 ± 1.4

CLIP - 97.2 ± 0.1 0.0 ± 0.0 89.3 ± 0.3 0.0 ± 0.0 64.8 ± 0.6 0.0 ± 0.0

MM-

IMDb

TRACED-

LEMoNOPT

Elim 81.4 ± 0.3 1.3 ± 0.1 76.6 ± 0.3 1.5 ± 0.5 - -

FGCD 80.6 ± 0.3 0.3 ± 0.1 75.5 ± 0.3 0.1 ± 0.2 - -

GCD 80.8 ± 0.4 0.6 ± 0.2 75.8 ± 0.3 0.4 ± 0.4 - -

LEMoNOPT - 80.3 ± 0.3 0.0 ± 0.0 75.4 ± 0.2 0.0 ± 0.0 - -

TRACED-

LEMoNFIX

Elim 80.9 ± 0.2 2.0 ± 0.1 75.7 ± 0.1 2.8 ± 0.4 - -

FGCD 80.0 ± 0.1 0.8 ± 0.1 74.4 ± 0.0 1.0 ± 0.5 - -

GCD 80.1 ± 0.1 1.0 ± 0.2 75.0 ± 0.3 1.8 ± 0.4 - -

LEMoNFIX - 79.3 ± 0.2 0.0 ± 0.0 73.6 ± 0.3 0.0 ± 0.0 - -

TRACED-

CLIP

Elim 80.9 ± 0.3 1.5 ± 0.1 76.1 ± 0.2 2.1 ± 0.1 - -

FGCD 80.1 ± 0.2 0.5 ± 0.2 74.9 ± 0.1 0.4 ± 0.2 - -

GCD 80.3 ± 0.1 0.7 ± 0.2 75.3 ± 0.1 1.0 ± 0.2 - -

CLIP - 79.7 ± 0.3 0.0 ± 0.0 74.6 ± 0.2 0.0 ± 0.0 - -

MS-

COCO

TRACED-

BLIP (itm)

Elim 98.9 ± 0.2 0.4 ± 0.0 92.1 ± 0.1 0.5 ± 0.0 80.4 ± 0.4 4.4 ± 0.1

FGCD 98.8 ± 0.0 0.4 ± 0.1 92.1 ± 0.1 0.4 ± 0.0 78.6 ± 0.5 2.0 ± 0.3

GCD 98.9 ± 0.1 0.4 ± 0.1 92.1 ± 0.1 0.4 ± 0.1 78.2 ± 0.3 1.5 ± 0.2

BLIP (itm) - 98.5 ± 0.1 0.0 ± 0.0 91.7 ± 0.1 0.0 ± 0.0 77.0 ± 0.2 0.0 ± 0.0

TRACED-

BLIP (itc)

Elim 98.7 ± 0.0 0.2 ± 0.1 90.8 ± 0.1 0.9 ± 0.1 76.8 ± 0.4 4.4 ± 0.1

FGCD 98.5 ± 0.1 0.0 ± 0.0 90.2 ± 0.1 0.2 ± 0.1 76.5 ± 0.3 4.1 ± 0.4

GCD 98.6 ± 0.1 0.1 ± 0.1 90.3 ± 0.2 0.2 ± 0.1 75.5 ± 0.3 2.6 ± 0.2

BLIP (itc) - 98.5 ± 0.1 0.0 ± 0.0 90.0 ± 0.0 0.0 ± 0.0 73.6 ± 0.5 0.0 ± 0.0

TRACED-

LEMoNOPT

Elim 97.8 ± 0.1 0.1 ± 0.1 86.3 ± 0.3 1.4 ± 0.2 70.8 ± 0.6 3.2 ± 0.1

FGCD 97.7 ± 0.1 0.0 ± 0.1 85.5 ± 0.4 0.4 ± 0.1 70.4 ± 0.6 2.6 ± 0.2

GCD 97.7 ± 0.1 -0.0 ± 0.1 85.2 ± 0.5 0.1 ± 0.1 70.7 ± 0.6 3.1 ± 0.1

LEMoNOPT - 97.7 ± 0.1 0.0 ± 0.0 85.1 ± 0.4 0.0 ± 0.0 68.7 ± 0.5 0.0 ± 0.0

TRACED-

LEMoNFIX

Elim 97.7 ± 0.1 0.0 ± 0.0 85.6 ± 0.2 2.9 ± 0.3 69.6 ± 0.4 3.9 ± 0.5

FGCD 97.8 ± 0.1 0.1 ± 0.0 84.6 ± 0.3 1.8 ± 0.3 69.3 ± 0.7 3.4 ± 0.6

GCD 97.7 ± 0.1 0.1 ± 0.1 84.2 ± 0.3 1.3 ± 0.5 69.7 ± 0.6 3.9 ± 0.2

LEMoNFIX - 97.7 ± 0.1 0.0 ± 0.0 83.1 ± 0.5 0.0 ± 0.0 67.1 ± 0.6 0.0 ± 0.0

TRACED-

CLIP

Elim 97.7 ± 0.1 0.2 ± 0.0 85.8 ± 0.2 2.3 ± 0.2 69.9 ± 0.4 4.9 ± 0.2

FGCD 97.5 ± 0.1 -0.0 ± 0.1 84.6 ± 0.1 0.9 ± 0.3 69.0 ± 0.6 3.6 ± 0.4

GCD 97.6 ± 0.1 0.1 ± 0.0 84.4 ± 0.2 0.7 ± 0.1 69.3 ± 0.4 4.0 ± 0.3

CLIP - 97.5 ± 0.1 0.0 ± 0.0 83.8 ± 0.3 0.0 ± 0.0 66.6 ± 0.3 0.0 ± 0.0
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# Sentence Variation Generator

For a given input sentence, generate up to 20 variations that have similar structure but convey clearly different meanings. 
Follow these systematic modification rules:

## Analysis Requirements
1. First, identify the basic structure of the sentence
2. Identify all components: subject, predicate, object (if any), attributives (if any), adverbials (if any), and clauses (if any)
3. Create variations by modifying one or two components per variation

## Component Modification Guidelines

### Subject Modifications (1-2 variations)
- Change the quantity of the subject: e.g., "A man" → "Two men"; "A group of people" → "One person"
- Change the subject itself: e.g., "A man" → "A woman"; "A person" → "An animal"; "A group of students" → "A group of police 
officers"

**Examples:**
- Original: "The doctor examined the patient carefully."
- Variation: "The nurse examined the patient carefully." (Changed subject identity)
- Variation: "Several doctors examined the patient carefully." (Changed subject quantity)

### Predicate Modifications (1-2 variations)
- Replace the verb with an unrelated verb: e.g., "standing" → "sitting"; "waving" → "running"
- Ensure the object (if present) is also modified to fit the new verb context

**Examples:**
- Original: "The chef prepared a delicious meal for the guests."
- Variation: "The chef served a delicious meal for the guests." (Changed verb)
- Variation: "The chef ruined a delicious meal for the guests." (Changed verb to opposite meaning)

### Object Modifications (1-2 variations)
- Replace the noun in the object with a different noun: ensure it still fits the context but differs significantly from the original
- If there is an object complement, modify it to express an opposite or completely different meaning

**Examples:**
- Original: "She bought a new car with her bonus."
- Variation: "She bought a new house with her bonus." (Changed object noun)
- Variation: "She bought an old car with her bonus." (Changed object attribute to opposite)

### Attributive Modifications (1-2 variations)
- For adjectives or nouns serving as attributives, replace with contextually appropriate words that convey completely 
different meanings
- For numerical attributives, change the quantity
- For prepositional phrases or infinitives, modify to maintain context while expressing significantly different meaning

**Examples:**
- Original: "The tall building on the corner was recently renovated."
- Variation: "The historic building on the corner was recently renovated." (Changed attributive adjective)
- Variation: "The tall building in the downtown area was recently renovated." (Changed attributive prepositional phrase)

Figure 5: First part of the prompt used to create the fine-grained noise using gpt-o4-mini.
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### Adverbial Modifications (1-2 variations)
- For time and place adverbials, change to completely different times or locations
- For manner and degree adverbials, change the adverb to its antonym or to a completely different adverb
- For reason, result, condition adverbials, modify the corresponding clause

**Examples:**
- Original: "They quickly finished their homework before dinner."
- Variation: "They slowly finished their homework before dinner." (Changed manner adverbial to opposite)
- Variation: "They quickly finished their homework after midnight." (Changed time adverbial)

### Clause Modifications (1-2 variations)
- Identify the components within the clause and modify them according to the guidelines above

**Examples:**
- Original: "She said that she would come to the party if she finished her work."
- Variation: "She said that she would skip the party if she finished her work." (Changed predicate in the clause)
- Variation: "She said that she would come to the party unless she finished her work." (Changed condition in the adverbial 

clause)

## Important Requirements

1. Each variation should differ from the original in 1-2 components only
2. Modifications must be significant enough to clearly change the meaning of the sentence
3. The modified sentence must maintain grammatical correctness and contextual coherence
4. If the original sentence is too short to generate 20 variations, provide as many as reasonably possible
5. Consider the context of the sentence and ensure modifications are contextually appropriate
6. Number each variation sequentially (1-20)

## Output Format
1. [Modified sentence 1]
2. [Modified sentence 2]
...
20. [Modified sentence 20]

Original: {sentence}

Figure 6: Second part of the prompt used to create the fine-grained noise using gpt-o4-mini.



Agentic-GenAI-Eval@KDD ’25, August 3–7, 2025, Toronto, ON, Canada Afriat et al.

1. a man is 
standing in front of 
a brick storefront 
wearing jacket. 

2. a man is 
standing in front of 
a brick storefront 
wearing jacket

3. a man is 
standing in front of 
some brick 
storefront wearing 
jacket

…

Caption 
Trajectory

Changed 
word

no

.

some

…

1. a man is 
standing in front of 
a brick storefront 
wearing the jacket. 

2. his man is 
standing in front of 
a brick storefront 
wearing the jacket.

3. his man is 
standing in front of 
a brick storefront 
wearing thecoat. 

…

Caption 
Trajectory

Changed  
word

no

his

thecoat

…

Figure 7: Caption trajectories using GCD (left) and Fast GCD (right) for the example in Figure 3. In both cases, TRACED identifies

"no" as the source of misalignment and further improves the caption’s alignment with the image.
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1. vehicles on a 
crossroads near a 
green traffic light. 

2. vehicles on a 
crossroads 
underneath a 
green traffic light.

3. vehiclesl a 
crossroads 
underneath a 
green traffic light.

…

Caption 
Trajectory

Changed 
word

crossr
oads

under
neath

vehicl
esl

…

1. vehicles on a 
street near a 
greenish traffic 
light.

2. vehicles on 
street near a 
greenish traffic 
light.

3. vehicles on 
street approaching 
a greenish traffic 
light.

…

Caption 
Trajectory

Changed  
word

greeni
sh

a

appro
aching

…

Figure 8: Caption trajectories using GCD (left) and Fast GCD (right) for the example in Figure 4. In both cases, TRACED improves

the caption’s alignment with the image using only minor semantic edits.
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